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An improved calculation method for fiber Raman amplifier
equations with multi-wavelength pumping
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A novel numerical method for fiber Raman amplifier (FRA) from standard propagation equations is pre-
sented and derived based on the one-step method for ordinary differential equation (ODE). The proposed
algorithm is effective in solving FRA equations including all the interactions among pumps, signals, and
noises. Applications of the numerical analysis to practical FRA-based systems show a great reduction in
computation time in comparison with the average power method and the fourth-order Runge-Kutta (RK)
method, under the same condition. Also the proposed method can decrease the computing time over three
orders of magnitude with excellent accuracy promises in comparison with the direct integration method.
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With the advance of high-power laser diode technology,
fiber Raman amplifier (FRA) has become a practical
choice to meet the increasing demands of transmission
capacity and distance of optical fiber communication sys-
tems. In addition to its distinctive flexibility in gain-
band allocation, the gain bandwidth of FRA also can
be easily extended with the inclusion of multiple pumps.
Seemingly simple in principle, the optimization process
for the gain-bandwidth design for FRA in a real wave-
length division multiplexing (WDM) system requires ex-
tensive efforts with more considerations on many factors,
such as pump interaction, polarization dependency, dou-
ble Rayleigh scattering, and detailed information on fiber
parameters. In the design of ultra-broad bandwidth FRA
with multiple pumps, however, it needs exhaustive com-
puting time to achieve well-behaved results by using di-
rect integration of coupled equations. The required sim-
ulation time may make the design be unpractical if the
bandwidth is large enough and transmission fiber length
is long enough. Fortunately, many practical methods are
proposed'~4. Reference [1] provided a direct Runge-
Kutta (RK) method which had taken into account of all
factors such as signals, pumps, noises, and Rayleigh scat-
tering, etc.. Reference [2] obtained an efficient method
with an average power analysis, which reduced the com-
puting time of over two orders of magnitude compared
with the direct integration approach based on ordinary
coupled differential equations. Liu et al.34 proposed a
multi-step method which could availably increase the pre-
cision and stability in designing FRA compared with the
average power method. Although some of these methods
can compute the generalized differential equation system
of FRA with excellent accuracy promises, they are mostly
high-memory demand and much complex.

In this paper, we provide a novel analysis for
ultrabroad-band FRA design with multiple pumps. The
proposed algorithm is effective in solving FRA equations
that include pumps, signals, noises, and their backscat-
tering waves. Simulation results show that, in designing
the FRA, our method can effectively improve the ac-
curacy and stability with decreased computing time in
comparison with the methods in Refs. [1,2].

The analysis of distributed Raman amplifier (DRA)
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is based on a set of coupled steady-state equations that
include spontaneous Raman emission and its tempera-
ture dependence, Rayleigh scattering including multiple
reflections, amplified spontaneous emission (ASE), stim-
ulated Raman scattering (SRS), high order Stokes gen-
eration, and arbitrary interactions between an unlimited
number of pumps and signals. The forward and back-
ward evolution of pumps, signals and ASE powers can
be expressed in terms of the following equations(2—¢
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where PT(z,v;) and P~(z,v;) are optical powers
of forward- and backward-propagating waves within
infinitesimal bandwidth around frequency v;, respec-
tively. «, 7, h, k, and T are attenuation coefficient,
Rayleigh-backscattering coefficient, Planck’s constant,
Boltzmann constant, and temperature, respectively. Aeee
is the effective area of optical fiber at frequency vy,
gr(Vm — v;) is Raman gain parameter at frequency v;
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due to pump at frequency u%’s]. The factor I’ accounts

for polarization randomization effects, whose value lies
between 1 and 2. In ) terms, m = 1tom =i — 1 and
m =i+ 1 to m = n explain amplifications or attenua-
tions for the channels at frequency v;, respectively. Ap
and Av are the noise spectral intervals for the noise in-
creases or decreases in the calculation (in this letter, they
are assumed to be equal). The first two terms in the
right hand of Eq. (1) denote the fiber loss and Rayleigh
back-scattering, the third term denotes the Raman gain
due to shorter wavelength, the fourth term denotes the
ASE noise with thermal factor, the fifth term denotes the
pump depletion due to longer wavelength, and the sixth
term denotes the loss due to noise emission!®

For the mathematical convenience, Eq. (1) is rewritten
(3,4]
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To solve Eq. (2), we divide the fiber length into many
segments with section length of Az. In Ref. [2], the av-
erage power analysis technique was applied. This tech-
nique was one-step method, which involves information
from one of the previous mesh point, z;. This method
could greatly decrease the computing time. According to
the method, Eq. (2) can be solved as

P*(zj41,v)

where Az is the step size for each elemental amplifier
section.

Here we present a novel method to more effectively
solve Eq. (1). Assuming that

Pi(zj_H, v) = Pi(zj, v)exp[(k1 + k2)Az/2],

= Pi(zj, v) exp[F(2;,v)Az], (4)

ki =F(z;,v), and ky=F
we can find that our method uses functional evaluation
information at points between z; and z;;, to obtain an
approximate solution of the mesh point, z;41. Roughly,
it looks as if our method may cost the computing time as
about two times as the average power method, but its ac-
curacy and stability is evident and then the step size can
be enlarged. In fact, the method can effectively decrease
the computing time under the same accuracy compared

(z; + Az,v),

with the average power method and the fourth-order RK
method. This method can be applied to real system per-
formance evaluations.

In order to compare the accuracy of our method with
that of average power method in Ref. [2] and fourth-order
RK method in Ref. [1], an ordinary differential equation

is tested, i.e.,
w_ (P 2N
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The exact solution for Eq. (5) is

and ¢ € [0,3.6]. (5)

y = exp(t' /800 + /150 + 2 /2). (6)

Substituting y(t) and (200 + éo + t) of Eq. (5) into
P*(z,v) and F(z,v) of Egs. (2) and (4), we can obtain
Fig. 1. Lines with square, triangular, asterisk, and circle
symbols are the results obtained from the exact solution,
our novel method, the average power method, and the
fourth-order RK method, respectively. From Fig.1 we
can see that, under the same step size h, our proposed
method has the most high accuracy. Simulation results
also show that, even the step size h of average power
method is half of our method, it still cannot reach the
same accuracy.

Figure 2 illustrates relative errors between the numeri-
cal values and exact solution. Under the same step size of
h = 0.1, the relative error between our method and exact
solution is the smallest and keeps almost the same values
remaining as small as 10~ with increase of ¢, while that
of the average power method grows almost linearly and
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Fig. 1. Accuracy comparison of our method, fourth-order RK
method, and average power method with exact solution.
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Fig. 2. Relationship of relative error with ¢.
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when ¢ >~2 the error of the fourth-order RK method
expands considerably and is then divergent.

Although our method costs computing time as about
two times as the average power method, its accuracy (see
Figs. 1 and 2) is evident, and then the step size can be
enlarged, if its accuracy margin is big enough. Hence,
the computing time in our method can be reduced with
a little sacrifice of accuracy. As to the fourth-order RK
method, we can obviously see that the computing time of
our method is just half of that, while the accuracy is more
higher. Therefore, we can conclude that, in fact, our
novel method has considered the computing speed and
the accuracy comprehensively and it can be effectively
applied to real system performance evaluations.

To calculate noise figure, we start from the fundamen-
tal propagation Eq. (1) and rearrange power dependent
terms (Eqs. (8)—(11): A, B, C, and D), and reduce the
propagation equations to a much simpler form as in Ref.
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where Pt (z,v;), P~ (z,vi), a, , h, k, T, and T are the
same meanings as in Eq. (1). G;(L) is the gross gain of

- 1)_1} Av,

the ith signal. Thus the noise figure can be given by
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For WDM systems, the “shooting method” is usually
used to solve such two-point boundary problem. In this
paper, we take the following iterative steps. First, we
calculate the backward propagation pump power distri-
bution along the fiber, without taking account of the
attenuation caused by signals. In this process, the pump
attenuation is only caused by the linear attenuation of
fiber. Next, we calculate the forward propagation sig-
nal power distribution. This time we have already got
pump power distribution along the fiber, so signals suffer
not only fiber attenuation but also the gain caused by
pumps. Then we calculate the backward propagation
pump power distribution along the fiber with taking
account of the attenuation caused by signals. Thus we
get another pump power distribution along the fiber and
average the former two pump powers with a weighting
factor. When we go on to calculate the signal propaga-
tion power, we use the averaged pump power. Repeat
these iterative steps until a promised precision is ap-
proached. Commonly the weighting factor can be taken
to be 1/6 and after 6 or 7 times iterations, a precision of
10—* can be approached.

In simulation, the used parameters are given as fol-
lows. L =10 km, T = 300 K, a, = 0.3 dB/km, a; = 0.2
dB/km, G = 20 dB, n = —38 dB/km, N = 100 (from
1510 to 1610 nm with the channel spacing of 1 nm), Ae¢r
= 50 pm?, I’ = 2. The pump wavelength are 1404, 1413,
1431, 1449, 1463, and 1495 nm, and the corresponding
optimal pump powers are 680, 600, 440, 190, 76, and 45
mW, respectivelyl®.

Figure 3 shows the on-off gain of the output signals
transmitting along the fiber of 10 km and noise figure,
which are calculated from our method and the average
power method, respectively. The solid line is from our
method with 10 fiber sections while the dashed line comes
from the average power method with 80 fiber sections,
respectively. It can be seen that, although with almost
the same precision, the iterative steps of our method
are much longer than the average power method. So
the computing time can be reduced to about one sev-
enth compared our method with average power method.
According to Ref. [2], the average power method can
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Fig. 3. The calculated signal optical gains and noise figures.
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Fig. 4. Pump power evolution along the fiber in the DRA.
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Fig. 5. Signal power evolution along the fiber in the DRA.

reduce the computing time of over two orders of mag-
nitude compared with the direct integration approach
based on ordinary coupled differential equationsl?l.
Therefore, our proposed method can decrease the com-
puting time of over three orders of magnitude in compar-
ison with the standard integration approach.

Figures 4 and 5 exhibit powers of pumps and signals
along the fiber. From Fig. 4, we can see that the inter-
action of different pump waves is significant, which will
cause amplification of some pumps before they are de-
pleted by signals. Both Figs. 4 and 5 show that there is
strong interaction between the pumps and signals due to
SRS.

In fact, our novel method is the second-order of QOur-
Runge-Kutta (ORK) method in Ref. [10]. The numeri-
cal calculations show that our proposed method is supe-
rior to average power method and the fourth-order RK
method in the accuracy. Theoretically, the accuracy can

increase with the order of ORK. On the other hand, the
more the order of ORK is, the more the computing time
costs under the same number of steps. In general, our
method can availably improve the accuracy and decrease
the computing time with larger step sizes. Actually, we
find that the second-order ORK is better than other or-
der ORK at giving consideration to the accuracy and
computing time.

In conclusion, we propose a fast and accurate nu-
merical method for ultra-broad bandwidth FRA design
with multiple pumps. Also we have successfully derived
the noise figure function from the standard propaga-
tion equations. Employing this method, output signal
gain spectra, pump power and signal power distributions
along the fiber have been simulated. Simulation results
show that, compared with the direct integration method
of ordinary coupled differential equations, our proposed
method can decrease the computing time with excellent
accuracy. Additionally, the method can improve the ac-
curacy in comparison with the average power method,
also it can remarkably decrease the computing time com-
pared with the fourth-order RK method. The method
can be further used to optimize the design of FRA.

J. Chang’s e-mail address is jianhuachang@seu.edu.cn.
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